JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 27, 201-204 (1995)

On the Correctness of Goscinski’s Algorithm’

RoBERTO BaLDON1,? BRUNO CICIANI, AND GiacOMO CIOFFI

Dipartimento di Informatica e Sistemistica, University of Rome “La Sapienza,” via Salaria 113, 1-00198 Rome, Italy

In this paper, the correctness of the mutual exclusion algo-
rithm proposed by Goscinski (J. Parallel Distribut. Comput.
9(7), 77-82 (1990)), hereafter %, is discussed and its features
are compared with other token-based algorithms already pub-
lished. In particular, we show that ‘6 works correctly only using
a communication system that guarantees a total ordering of
messages, otherwise it is incorrect. We further give a modified
version of 4, hereafter A€€, and show that B€Y¢ is actually
a simple modification of the Suzuki-Kasami algorithm (ACM
Trans. Comput. Systems 3(5), 344-349 (1985)). ©195 Academic
Press, Inc.

1. INTRODUCTION

Many distributed mutual exclusion (dmutex) algorithms
have been proposed in the literature and they have been
classified by Raynal [8] in two families: the permission-
based algorithms and the token-based ones. The token-
based algorithm family exchanges a virtual object among
the processes called token, and its possession gives a pro-
cess the permission to enter its critical section (CS). We
can split the token-based algorithms in two subfamilies
(in function of how the token is exchanged among the
processes): the token-asking [2, 12, 10] and the logical ring
[7]- In token-asking algorithms, the token is passed among
the processes only if someone asks for it.

Dmutex algorithms are based on some communication
assumptions. A communication system usually guarantees
one of the following message ordering abstractions:

No ordering (NO): (a) the communication is reliable
and (b) the transmission times are unpredictable but finite;

Partial ordering (PO): (a), (b), and (c) for each pair of
processes messages are received in the order they were
sent;

Causal ordering (CO): (a), (b), and (d) if two emissions
of messages are ordered by the “happened before” relation
[6], each process receives such messages in that order [9];

Total ordering (TO): (a), (b), and (e) all the messages
are fully ordered among themselves. (This abstraction is
also known as logically instantaneous communication
mode.)

Of course (e) implies (d), which in turn implies (c). Such

! Work partially supported by the Consiglio Nazionale delle Ricerche
under Contract 92.02294.CT12.
2 E-mail: baldoni@dis.uniromal.it.

201

relation means that a TO system needs more complex
protocols to be implemented than a CO one and so on.
Therefore, the message ordering abstraction that the sys-
tem must guarantee, in order that the algorithm works
correctly, is an important comparison index.

Due to the relative simplicity of the protocol (only two
causal messages) and to the centralized approach (there
is only one data structure that contains requests to be
served), token-based algorithms need relaxed assumptions
than the others. In particular, while the permission-based
algorithms [11, 1] require a PO system to work properly,
token-based algorithms [2, 12, 10] need only an NO system.

 falls into the token-asking family, in particular it is an
all-asking such as [12, 10] and, therefore, the number of
messages exchanged per CS is n where n is the number
of processes; ¢ is based on two communication system
assumptions: (i) there is a homogeneous or heterogeneous
network and (ii) it is an error-free network; i.e., the mes-
sages are not lost and are delivered in the order they were
sent. The latter assumption is ambiguous and it can be
interpreted in two ways: % runs on a PO system or on a
TO system. However, in both cases, 9 needs a complex
communication system than other similar token-based al-
gorithms.

In the sequel we will show that, using a PO system, 4
is incorrect; i.e., it prevents neither the occurrence of star-
vation nor deadlock. Starvation may occur because the
algorithm may lose requests and deadlock may occur be-
cause the algorithm may duplicate requests. We will also
show that ‘¢ runs only on a TO system, while with a CO
system starvation may yet manifest itself. In the final sec-
tion, we will make the necessary corrections to % in order
to obtain an algorithm (B€%) that runs on an NO system.
We will see that B is actually a simple modification of
[12]. For brevity’s sake all formal proofs are available in [3].

Finally, we want to underline that the worth of % was
to point out the necessity of introducing priority-based
discipline in dmutex algorithms. Indeed, all the proposed
algorithms in the literature used FirstCome-FirstServed as
the discipline to serialize requests. A thorough examina-
tion of the insertion impact of the priority in dmutex algo-
rithms is in [2].

2. THE % ALGORITHM

Two algorithms were proposed in [5]: one is suitable for
the environment requiring priorities (P-system) and the

0743-7315/95 $6.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

202

other one for real-time environments (RT-system). The
differences between these algorithms are implied by the
features of environments as well as methods used to ensure
freedom from starvation. The skeleton of these two algo-
rithms is the same, therefore in the following we will de-
scribe only the P-system version. The algorithm is based
on: (i) one process per site, (ii) no knowledge about the
token location. % uses in each process a local priority queue
(Q) to store incoming requests from other processes and
a priority queue associated with the token (P) to memorize
the processes waiting for CS entry (for further details, see
[S])- The structure of the code executed by process i is the
following (the notation is similar of 6):

procedure wants_to_enter (p); {(p is the
priority of the request}
begin
requesting = true;
if have_token
then begin
broadcast REQUEST(i, p(i));
1. wait until receive TOKEN(P) ;
2. have_token = true;
end;
critical section;
if Q= 9) N (P = D))
then begin
3. append (P, Q) — P;
. have_token = false;
5. send TOKEN(tail(P)) to head(P);
end;

requesting = false;
end.
procedure request_arrives (7j, p); {this procedure
must be done atomically)

begin
6. if 71 have_token
then discard the request;
else begin
add (j, Q) - Q;
7. acts like 3 and 5;
end
end.

2.1. Correctness

A token-asking algorithm must avoid loss and multiplica-
tion of requests. The loss is due to the lack of processes

BALDONI, CICIANI, AND CIOFFI

FIG. 1. Loss of a request.

that register requests, the multiplication is due to multiple
insertion of the same request in P. The loss may lead to
starvation since a process may wait forever the token (step
1), whereas the multiplication leads to token loss since
after a finite time the token will be passed (step 5 or 7) to
a process not waiting for it. We consider this event as a
deadlock. In the sequel we will consider message duplica-
tion only, since the removal of duplicated requests exe-
cuted by every process carries to multiplication removal.

Suppose that the communication system guarantees PO.
In this hypothesis 4 creates the conditions for starvation
and deadlock.

Starvation may occur since requests can be lost. Indeed,
according to %, the process having the token disables the
reception of requests (step 4) before executing the send-
token statement (step 5). To the contrary, a process starts
to record requests only upon the receipt of the token (step
2), otherwise it discards requests (step 6). A PO system
may deliver a request both to the process sending and to
the process receiving the token when they are disabled to
accept the request (see Fig. 1). Note that a time-out based
mechanism to retransmit requests (as suggested in [5])
does not avoid starvation, since a request could be always
delivered in time intervals during which no process accepts
requests (see Fig. 2).

Deadlock can occur since a request can be delivered, by
a PO system, both to the process sending and to the process
receiving the token when they are enabled to accept the
request (see Fig. 3) with consequent creation of an unex-
pected request (i.e., requests in P without a process waiting
for them). Indeed, in % no check is done to avoid the
presence in P of multiple copies of the same request (step

Time-out

Time-out

FIG. 2. Starvation due to infinite losses of a request.

ON THE CORRECTNESS OF GOSCINSKI'S ALGORITHM

Pi >
P

i

P >

FIG. 3. Request duplication.

3 and 7). Other token-asking algorithms [2, 12] mark re-
quests with a sequence number. This label avoids having
a request served more than once.

Let us suppose to have a CO system. In this case the
duplication of requests is removed tout-court, since the
broadcast message m,., of Fig. 3 is causally ordered with
Myoken- Therefore, the communication system will deliver
Myoken tO the user process only after the delivery of m,.q,

203

even though the communication system will receive moken
first. Unfortunately the messages of Fig. 1 are not causally
ordered, therefore starvation may yet manifest itself.

If we assume a TO system, we avoid both the loss of
requests and the request multiplication: the duplication is
avoided since total order implies causal order, the loss is
avoided since the situation of Fig. 1 can never occur. We
can get a total order attaching a progressive number, given
by a central coordinator, to each message and the system
will deliver the messages according to that order to each
process. Such ordering can be easily implemented making
simple modifications to the centralized broadcast protocol
proposed in [4].

3. THE 3%% ALGORITHM

Considering the algorithm of Section 2, the filter of step
6 plays a key role in avoiding request loss, whereas the
data structures Q and P play a key role in removing request
duplication. In particular, to avoid any loss of requests, we

procedure vants_to_enter (p); {p is the priority of the request}

begin
requesting = true;
if have_token
then begin

RN[i,1] ;= RN[i.1})+1 ; RN[i,2}:=p ;
broadcast REQUEST(i, RN[i.1], RN[1.2]);
wait until receive TOKEN(P,LN) ;

have_token := true;
end;

critical section;

1. LN[t]:= RNT[i,1] ;
2. for each ; € {1,...n} - {i} do
3. if (=in(P,) A (RN[7, 1] = LN[j]+ 1)) then add(;,Q)— Q;
4. append(P,Q)— P;
if ~(P=1#8)
then begin
5. have_token := false;
6. send TOKEN(tail(P), LV) to head(P);
end;
requesting := false;
end.
procedure request.arrives (j.n.p); {this procedure must be done atomically}
begin
7. if RN[3,1] < n
then begin
RN[3,1}:=n ; RN[},2]:=p ;
if have_token A (-requesting) A (RN[7,1] = LN[j] + 1)
then begin
8. have_token := false;
9. send TOKEN(tail(P), LN) to head(P);
end
end

else discard the request;
end.

FIG. 4. The 3%%€ algorithm.

204

if (P=19)
then for each ;€ {1,...n} - {1} do
if (=in(P, j} A{RN[j,1] = LN[;]+1)) then add(;, P)— P;

FIG. 5. The &€ algorithm using an FCFS discipline.
should prevent processes from discarding requests or that
they at least discard only requests that were already served.
Therefore, step 6 should be removed or at least changed.
The request duplication can be dealt with by increasing
the local and global information about the requests. P and
Q does not contain indeed enough information.

In this section, we correct § in order to have an algorithm
that (i) runs on an NO system and (ii) serves requests
according to their priority avoiding starvation. The B€%€
algorithm is shown in Fig. 4.

Duplication is avoided by applying the sequence number
mechanism cited in the previous section (for further details,
see [12]). We need a new data structure that travels with
the token LN and a local one at each process RN. LN is
a vector whose size is n and LN[i] stores the sequence
number of the last served request of process i. RN is an
array with n rows and 2 columns. Process i stores in RN,[j,
1] the largest sequence number received from process j
and in RN,[j, 2] its priority.

When process i exits from the CS, it updates its sequence
number in the LN vector (step 1) and appends to P the
requests stored in RN; verifying the condition of step 3.
Such a condition guarantees that P never include requests
duplications. Due to the simplicity of the protocol (only
two causal messages: REQUEST and TOKEN), we note
that requests whose sequence number is less than that
stored in RN can be discarded since they have already
been served. Hence the filter of step 7.

From the code of Fig. 4, we see that an FCFS discipline
can be obtained by replacing lines 2 to 4 with those shown
in Fig. 5. Doing so, we get the Suzuki—Kasami algorithm.
Hence, the proofs that €€ guarantees mutual exclusion
and is deadlock free are omitted since they are similar to
those in [12]. As far as starvation is concerned, the proof
given in [S] holds.

4. CONCLUSIONS

In this paper, we showed that the dmutex algorithm
proposed by Goscinski [5] runs only on a TO communica-
tion system. If an NO communication system, which is the
standard system of other similar token-based algorithms
[2, 10, 12], is available, % prevents neither starvation nor
deadlock. We gave a correct version of the algorithm
(B€€) and we showed that B€€ is actually a simple modi-
fication of the Suzuki-Kasami algorithm [12]. Finally, we
want to emphasize that Goscinski was the first to point
out the necessity of introducing a priority-based discipline
in dmutex algorithms. A thorough examination of the in-
sertion impact of the priority in dmutex algorithms can be

Received July 30, 1992; revised April 22, 1994; accepted May 18, 1994

BALDONI, CICIANI, AND CIOFF1

found in [2]. All the formal proofs concerning the incorrect-
ness of %G and the correctness of B€%€ can be found in [3].

REFERENCES

1. R. Baldoni, An O(n"/¢"- 1) distributed algorithm for the k-out of m-
resources allocation problem. Proceedings of the 14th conference on
Distributed Computing Systems, pp. 81-88. IEEE Press. New
York. 1994.

. R. Baldoni and B. Ciciani, Distributed mutual exclusion algorithms
with priority. Inform. Process. Lett. 50, 165-172 (1994).

3. R.Baldoni, B. Ciciani, and G. Cioffi, Token-Asking distributed mutual
exclusion algorithm with priority. Technical Report RAP. 05.94, Di-
partimento di Informatica ¢ Sistemistica, Universita di Roma “La
Sapienza,” Jan. 1994,

4. J. Chang and N. F. Maxemchuk, Reliable broadcast protocol. ACM
Trans. Comput. Systems 2(3), 251-273 (1984).

5. A. Goscinski, Two algorithms for mutual exclusion in real-time dis-
tributed computer networks. J. Parallel Distribut. Comput. 9(7), 77—
82 (1990).

6. L. Lamport, Time, clocks and the ordering of events in a distributed
systems. Comm. ACM 21(7), 558-565 (1978).

7. G. Le Lann, Distributed systems: towards a formal approach. Pro-
ceedings of the IFIP Congress, pp. 632-646. North-Holland, 1977.

8. M. Raynal, Simple taxonomy for distributed mutual exclusion algo-
rithms. ACM Oper. Systems Rev. 25(1), 189-193 (1990).

9. M. Raynal, A. Schiper, and S. Toueg, The causal ordering abstraction

and a simple way to implement it. Inform. Process. Lett. 39, 343-

350 (1991).

10. G. Ricart and A. K. Agrawala, Authors response to: On mutual
exclusion in computer networks. Comm. ACM 26(1), 147-148 (1983).
11. B. A. Sanders, The information structure of distributed mutual exclu-
sion algorithms. ACM Trans. Comput. Systems 5(3), 284-299 (1987).

12. I. Suzuki and T. Kassami, A distributed mutual exclusion algorithm.
ACM Trans. Comput. Systems 3(5), 344-349 (1985).

[

ROBERTO BALDONI was born in Rome on 1965. He received the
“Laurea" in electronic engineering in 1990 and the Ph.D. in computer
science in 1994 from the University of Rome “*La Sapienza.” Presently
he is a post-doctoral fellow at the Dipartimento di Informatica e Sistemis-
tica of the University of Rome “‘La Sapienza.” His main research interests
include operating systems, distributed algorithms, and performance evalu-
ation of concurrency control algorithms in multidatabase systems.

BRUNO CICIANI received the “Laurea™ in electronic engineering
in 1980 from the University of Rome *“'La Sapienza.” He is Professor of
Computer Science at the University of Rome *La Sapienza.” His current
research activities include distributed computer systems, fault-tolerant
computing, languages for parallel processing. and computer system per-
formance and reliability evaluation. He has published many papers in
international journals, and he is the author of the book Manufacturing
Yield Evaluation of VLSI/WSI Systems to be published by the IEEE
Computer Society Press.

GIACOMO CIOFFI received the “‘Laurea’ in electrical engineering
in 1961 from the University of Naples and “libera docenza™ in electronic
computers in 1970. He is Professor of Computer Science at the University
of Rome “‘La Sapienza,” where he teaches courses in logical design,
computer architectures, and distributed computing. His research activities
are focused on distributed systems and programming, parallel algorithms.
VLSI architectures, and logical CAD. He has published many papers in
international journals including /EEE Trans. on Computers and IEEE
Transactions on Industrial Control.

