Proactive Cloud Management for Highly Heterogeneous Multi-Cloud Infrastructures

Alessandro Pellegrini
dis.uniroma1.it
DIAG – Sapienza, University of Rome

Pierangelo Di Sanzo
disanzo@dis.uniroma1.it
DIAG – Sapienza, University of Rome

Dimiter R. Avresky
autonomic@irianc.com
IRIANC – Munich, Germany

I. INTRODUCTION

The presence of software anomalies—such as memory leaks and/or unterminated threads—may be a major problem affecting performance and availability of computing applications. The problem studied in [1] showed that software errors are the cause of around 40% of failures in web applications. Given the size and complexity of many modern application deployments, identifying and fixing software anomalies may be a long, costly, and burdensome task. To cope with this problem, some literature studies proposed techniques based on software rejuvenation [2], [3]. These techniques detect the effects due to accumulation of software anomalies by means of monitoring agents, which trigger specific actions to force software rejuvenation (e.g. process/system restart).

The modern cloud computing paradigm [4] offers the possibility to access virtualized computing resources on demand. Some studies demonstrated that virtualization and cloud computing can be exploited to improve availability and performance of applications subject to the problem of software anomalies [5], [6]. Basically, this can be done by means of smart strategies that use spare virtual machines to promptly replace active virtual machines before crashing, or whose performance has deteriorated, due to the accumulation of anomalies. However, when considering a large-scale application deployment on the cloud, the problem of managing accumulation of anomalies becomes more complex, given that additional factors, such as the presence of resources distributed over multiple cloud regions, are involved.

A recent literature study presented Autonomic Cloud Manager (ACM) Framework [7], a proactive machine learning (ML)-based framework that manages distributed deployments of client-server applications on multiple cloud regions. Advantages provided by ACM Framework are: (a) it automatically enforces software rejuvenation of a virtual machine (VM) which is approaching a failure and activates a spare healthy VM that takes its place; b) it allows replicas of VMs to be distributed over multiple cloud regions, while automatically handles and forwards incoming requests from clients to VMs of the different regions; c) it uses a proactive load balancing approach to distribute client requests to more-healthy regions on the basis of failure frequency of VMs.

We note that an application deployment over different geographical regions allows to improve availability (e.g. in front of a failure of an entire data center in a region). Even, in some case, applications might require to be instantiated on an hybrid cloud system, which typically involves multiple cloud regions. This may be required, e.g., when a portion of the data should not be disclosed on a public infrastructure. As the latter point, Gartner [8] foresees that in the near future, 51% of cloud-deployed applications will in fact exploit hybrid cloud infrastructures.

Nevertheless, we note that when using different cloud regions (notably when they belong to different cloud providers), they could be heterogeneous in terms of available resources (e.g. number of virtual machines, cpu type and memory size). These differences may have an impact on the effectiveness of workoad distribution policy in ACM Framework. We emphasize that using different and heterogeneous cloud regions, as well as a multi-cloud infrastructures, could be as well a strategic decision. For example, different cloud providers offer various types of VMs at different costs. Also, the cost of VMs of the same cloud provider may change depending on the geographical region where they are located. Therefore, it could be more convenient to have more VMs in some regions, or of a given provider, rather than in/of other ones.

In this paper, we extend the previous results in [7] by studying different policies for the load balancing problem in ACM Framework. We remark that this problem arises from the need of distributing the workload in order to balance the effects of VM failures (and the subsequent overhead due to rejuvenation of VMs) over the different cloud regions where the application is deployed. We note that the heterogeneity of
regions is likely to exacerbate the load imbalance, thus leading to scenarios with (highly) overloaded/underloaded regions.

We present an experimental comparison of the load balancing policies in the case of two hybrid cloud infrastructures composed of two and three regions, respectively. In our experiments, we used two regions hosted in Amazon EC2 and one region hosted in a private infrastructure.

The remainder of this paper is structured as follows. In Section II we discuss related work. Section III presents an overview of ACM Framework. The load balancing policies for heterogeneous multi-cloud environments that we analyse are described in Section IV. Finally, the experimental data and the assessment of policies are discussed in Section VI.

II. RELATED WORK

Load balancing in cloud computing [9], [10], [11] is a fundamental topic, and it has been studied in the literature from different aspects, such as scalability, generated overhead, energy consumption and carbon emission perspective. Our work, similarly to [12], specifically adds to all these aspects the issue of availability/dependability of applications hosted on a cloud environment. Differently from [12], we explicitly tackle the case of geographically-distributed multi-cloud (hybrid) environments.

The works presented in [13], [14], [15] specifically tackle the issue of load sharing from a SLA point of view. The work in [13] explicitly relies on a self-control loop to monitor the state of virtual machines. ACM Framework keeps the ability to control load balancing from a SLA-compliance perspective, as well as to reduce the response time experienced by end users and to improve system availability.

In [16], [17] the authors propose to use a mixture of simulation and machine learning to study optimal deployments of cloud-based in memory applications. ACM Framework keeps the ability offered by these proposals and offers the possibility to modify the deploy at runtime in case the workload conditions change during the lifetime of the system.

The works in [18], [19] address the issue of resource allocation in a cloud environment trying to maximize the usage of available resources and to improve the efficiency. We keep these abilities, while adding the possibility to migrate incoming (remote) workload, so as to decrease response time and reduce and increase availability/dependability.

In [20], the authors present a middleware infrastructure to automate the deployment of large-scale service compositions. Our framework allows as well to transparently deploy applications in distributed (hybrid) clouds, while monitoring their runtime behavior to increase the availability/dependability.

In [21], [22], machine-learning techniques are used to learn workload indices to dynamically schedule jobs. The indices combine information from the key resources of contention: CPU, disk, network, and memory. We exploit machine-learning techniques as well to learn from the same features, but we used the learned information to determine what is the best configuration of the various cloud regions in terms of active VMs and incoming requests.

The works in [23], [24] target cloud computing environments using ML-based prediction models to self-tune the runtime configuration of the applications being run on the virtualized infrastructure. Differently from our proposal, these works do not explicitly consider multiple cloud regions. Moreover, their principal target is the performance of applications, rather than their availability and dependability.

In the work in [25], the possibility to add/remove VMs dynamically at runtime to account for load changes is explored in the context of MMOGs games. We have this same capability in our system, but we target generic applications in an agnostic fashion.

III. OVERVIEW OF THE ACM FRAMEWORK

As we discussed, ACM Framework is designed for applications based on a client-server model, where the server can be replicated over different machines. ACM Framework builds on top of the F^2PM framework [26] and of the PCAM [6] framework. F^2PM is designed to build ML-based prediction models which are completely agnostic of the running application. During an initial phase, the system under monitoring (namely a VM running a server replica) runs the application and a thin software client which measures a large set of system features, such as memory usage, CPU time, and swap space usage. This information is transferred to a feature monitor agent. This agent builds a database of system features, for later usage by the ML algorithms. Under the accumulation of software anomalies, these measures are subject to change over time. The user of F^2PM can set several constraints which, altogether, define the failure point of the system. This failure point is not necessarily related to an actual crash of the system, rather it can describe as well the violation of one or more SLA (e.g. the average response time overcomes a given threshold). All measurements are fed into an automatic ML toolchain. The goal of this toolchain is to generate and validate alternative ML models for predicting the Remaining Time To Failure (RTTF), as well as to select (via Lasso regularization [27]) what are the most relevant system features to be used by these models. This selection allows to reduce the amount of information to be managed when the system is operational. The user of F^2PM is provided with as well a series of metrics which allow to select which is the most effective ML model to be used for predictions. F^2PM supports several ML models, namely Linear regression [28], M5P [29], REP-Tree [30], Lasso as a predictor [27], Support-Vector Machine (SVM) [31], and Least-Square Support-Vector Machine [32].

The ML-based prediction models generated by F^2PM are then used by PCAM to enforce proactive rejuvenation of a VM before it reaches a failure point. Indeed, these models allow PCAM to estimate the RTTF; i.e. the time after which a crash will happen or a SLA will be violated due to the accumulation of anomalies. PCAM keeps some VMs hosting server replicas in the ACTIVE state, while others VMs in the STANDBY state. The state of a VM is controlled by a Virtual Machine Controller (VMC). VMC maps a ML model to a given VM, and uses the system features selected by Lasso regularization for training the ML model to predict, at runtime, the RTTF of the VM. Whenever the estimated RTTF of an ACTIVE VM is less than a threshold (established by the user), VMC sends an ACTIVATE command to a VM in the STANDBY state and
a REJUVENATE command to the about-to-fail VM. In this way, availability of a server replica is ensured by prompt and proactive takeover of an anomaly-free VM.

PCAM targets as well transparency towards the user of the application at the level of a single cloud region, namely the virtualization infrastructure where all the VMs managed by a VMC are hosted. In fact, all the requests issued by remote clients of the system are directed to VMC, which hosts a load balancer. The goal of this component is to balance the load associated to client requests to VMs in the ACTIVE state.

ACM, as shown in Figure 1, brings all the capabilities of PCAM to a geographically-distributed network of VMs. In particular, several VMCs instances are in charge of monitoring a cloud region each. As mentioned before, a cloud region includes a set of VMs hosted by a single cloud provider or a single virtualization infrastructure in a given geographic location. To maximize the dependability and to reduce the response time, the interconnection among the various controllers is actuated via an overlay network, which selects the path with the smallest latency among two given controllers, and is able to reroute connections in case of a network link failure. Among all the regions VMCs, a leader VMC is automatically elected using the algorithm in [33], which has been shown to be tolerant to multiple nodes and link failures.

As shown in [7], the failure and rejuvenation rate of MVs can have a non-negligible impact on the performance of a region, and consequently on the response time experienced by end-users. Further, some cloud regions could be more overloaded than others. This may be due to: a) the different number of clients than could be connected to any region, and b) the heterogeneity of regions in terms of available resources. Under these circumstances, some regions could be overloaded with respect to others, and the rate of anomaly accumulation of these regions could be therefore likely higher. For these reason, ACM Framework requires smart policies to determine how to balance the load across regions.

IV. POLICIES FOR LOAD BALANCING IN HIGHLY HETEROGENEOUS ENVIRONMENTS

In this section, we present the policies that we evaluate in our study. These policies aim at performing efficient proactive load balancing across cloud regions in order to avoid that different failure and rejuvenation rates in different regions lead to overloaded and underloaded regions. Ultimately, the goal of these policies is to ensure that all active VMs in all regions show the same Mean Time To Failure (MTTF) in front of the heterogeneity of regions in terms of number and computing power of VMs.

In ACM Framework, the MTTF of VMs hosted in a cloud region is estimated by the ML models. The VMC of a region i periodically sends to the leader VMC the last average value of the Region Mean Time To Failure (RMTTF), say lastRMTTF_i, calculated as the average MTTF of all active VMs in the region i. When the leader VMC receives lastRMTTF_i at time t, the current RMTTF of the region i, say RMTTF^t_i, is (re-)calculated by using the following weighted average:

$$\text{RMTTF}^t_i = (1 - \beta) \cdot \text{RMTTF}^{t-1}_i + \beta \cdot \text{lastRMTTF}_i,$$

where RMTTF^{t-1}_i is the previous value of RMTTF and $0 \leq \beta \leq 1$.

The goal of the policies is therefore to decide the fraction f_i of global incoming requests to be forwarded to a cloud region i to ensure that the different values of the current RMTTF of all regions converge (fast) to the same value.

A. Policy 1: Sensible Routing

The first policy that we study is called sensible routing, and is based on the work presented in [34]. Assuming to have N cloud regions, the fraction f_i of global incoming requests to be forwarded to cloud region i is calculated as:

$$f_i = \frac{\text{RMTTF}^t_i}{\sum_{j=1}^{N} \text{RMTTF}^t_j}.$$

Intuitively, by using this policy, the fraction of requests forwarded to a region i is proportional to the weight of the current RMTTF of the region over the sum of the last RMTTF of all regions.

B. Policy 2: Available Resources Estimation

This policy uses a single numeric parameter as an abstraction to quantify the amount of available resources in a region. It assumes that resources are linearly consumed by the accumulation of anomalies over time (therefore by the incoming requests). Accordingly, the estimation of the amount of available resources a in region i is calculated as:

$$Q_i = \text{RMTTF}^t_i \cdot f_i \cdot \lambda$$

where λ is the global incoming request rate, thus $f_i \cdot \lambda$ is the incoming request rate of region i. The above estimation is based on the idea that if a region shows a higher RMTTF in front the same amount of received requests, then the amount of available resources in that region is higher. Similarly, if the region receives more requests in front the same RMTTF, then the amount of available resources in that region is higher.

The fraction of requests to be forwarded to region i is calculated as:

$$f_i = \frac{Q_i}{\sum_{j=1}^{N} Q_j}.$$

Basically, with this policy, the fraction of requests forwarded to a region i is proportional to the current amount of estimated resources of the region over the sum of the amount of estimated resources of all regions.

C. Policy 3: Exploration

The third policy uses an exploration strategy, as it is inspired to the hill climbing [28] search algorithm. This policy calculates the Average RMTTF (ARMTTF) over all regions, i.e.:

$$\text{ARMTTF} = \frac{\sum_{i=1}^{N} \text{RMTTF}^t_i}{N}.$$
Then, all regions for which $\text{RMTTF}_i > \text{ARMTTF}$ get their current value f_i decreased, while the regions with $\text{RMTTF}_i < \text{ARMTTF}$ get their value f_i increased.

The policy therefore selects all the regions such that $\text{RMTTF}_i < \text{ARMTTF}$ (which we call the set of overloaded regions $\text{OL} = \{ i : \text{RMTTF}_i < \text{ARMTTF}\}$), and for each of these regions it computes the new value of the fraction f_i, say $f_{i\text{next}}$ as:

$$f_{i\text{next}} = \frac{\text{RMTTF}_i}{\text{ARMTTF}} \cdot f_i \cdot k$$ \hspace{1cm} (6)

where k is a constant scaling factor. Of course, the equality $\sum_{i=1}^{n} f_i = 1$ must hold. To this end, it must be ensured that any portion taken out of some f_i must be added to some f_j, $i \neq j$. Then, the policy computes the total variation of the flow of overloaded regions:

$$\Delta f^< = \sum_{i \in \text{UL}} (f_{i\text{next}} - f_i)$$ \hspace{1cm} (7)

Then it selects all the regions such that $\text{RMTTF}_i > \text{ARMTTF}$ (which we call the set of underloaded regions $\text{UL} = \{ i : \text{RMTTF}_i > \text{ARMTTF}\}$), and for each of these regions it updates the workload fraction as:

$$f_{i\text{next}} = \frac{\Delta f^<}{\sum_{i=1}^{n} \text{RMTTF}_i} \cdot f_i \cdot k$$ \hspace{1cm} (8)

where k is the same scaling factor.

Summarizing, all fractions are calculated as:

$$f_{i\text{next}} = \begin{cases}
\frac{\text{RMTTF}_i}{\text{ARMTTF}} \cdot f_i \cdot k & \text{if } \text{RMTTF}_i < \text{ARMTTF} \\
\frac{\Delta f^<}{\sum_{i=1}^{n} \text{RMTTF}_i} \cdot f_i \cdot k & \text{otherwise}
\end{cases}$$ \hspace{1cm} (9)

V. THE ACM FRAMEWORK CLOSED CONTROL LOOP

ACM Framework adopts a control strategy based on a closed loop. ACM Framework assumes that a user can arbitrarily connect to whichever cloud region. Each region has a load balancer (LB) to which users send requests. In order to achieve that any region i processes the established fraction of request f_i over the global incoming requests, ACM Framework uses a global forward plan. After that the fraction f_i of requests that each region should process has been calculated, this plan establishes the fractions of requests that are sent from users to the LB of a region that have to be forwarded to the local region and to be forwarded to LBs of other regions. The plan is updated at each step of the closed control loop.

The closed control loop includes the four states reported in Figure 2. Initially, the system enters the Monitor state. In this state, the system features are collected by each VMC in a region according to the distributed organization of the F2PM framework. These results are then fed to the ANALYZE() routine, which is depicted in Algorithm 1.

The execution of Algorithm 1 brings the system into the Analyze state. The operations associated with this state differentiate between an execution on the leader VMC and on the slave VMCS. In particular, every VMC—both the leader and the slaves—apply the ML-based prediction models offered by F2PM to determine the RMTTF of the local region. Then, all slave VMCS send their RMTTF values to the leader.
Algorithm 1 Analyzing the Distributed Deploy

procedure ANALYZE()
Predict local $RMTTF_i$ using ML-based models
if current VMC is leader then
 collect all $RMTTF_i$ from slave VMs
else
 send local $RMTTF$ to leader VMC
end if
Actuate PCAM policies
end procedure

Algorithm 2 Planning Autonomic Actions on the Deploy

procedure PLAN()
for $i \in \text{CloudRegions}$ do
 $f_i^t \leftarrow \text{POLICY}(f_{i-1}^t, RMTTF_1, \ldots, RMTTF_n)$
end for
send to all slave VMCs the associated f_i^t
end procedure

Algorithm 3 Executing Autonomic Actions on the Deploy

1: procedure EXECUTE()
2: if slave VMC then
3: receive f_i^t from leader VMC
4: end if
5: if Predicted Response Time $> \text{threshold}$ then
6: ADDVMs()
7: end if
9: end procedure

After the execution of EXECUTE() completes, the system enters again the Monitor state, and the time era t is incremented to the next one.

VI. EXPERIMENTAL RESULTS

A. Benchmark Setup

To assess the presented policies, and to compare their effectiveness, we conducted an experimental study using a hybrid cloud architecture. We used three cloud regions: Region 1, hosted in the Ireland Region of Amazon EC2. Region 2, hosted in the Frankfurt Region of Amazon EC2, and Region 3, privately hosted in a 32-cores HP ProLiant server with 100 GB RAM, located in Munich (Germany). We used 6 m3.medium Amazon EC2 instances in Region 1, 12 m3.small Amazon EC2 instances in Region 2, and 4 VMs equipped with 2 virtual CPU cores, 1 GB or RAM, and 4 GB of virtual disk space in Region 3. The HP ProLiant server was equipped with VMware Workstation 10.4 as the hypervisor. All VMs were equipped with Ubuntu 10.04 Linux Distribution (kernel version 2.6.32-5-5amd64).

The test-bed application was the TPC-W benchmark [35], a multi-tier e-commerce web application that simulates an online store. We used a Java implementation of TPC-W [36] developed using servlets, and relying on MySQL [37] as a database server. Clients were emulated using emulated web browsers to generate requests according to TPC-W specifications. We modified the TPC-W implementation to randomly generate software anomalies at run-time, including memory leaks and unterminated threads. Specifically, anomalies were generated with different probabilities on each VM when receiving a client request—10% of requests generate a memory leak, 5% of requests generate an unterminated thread. This led to scenarios where each VM (thus each cloud region) showed different anomaly occurrence patterns. We varied the number of active clients (towards each cloud region) in the interval [16, 512], ensuring that the clients connected to each cloud region (thus, to the VMC on each cloud region) where significantly different in number. Based on our previous results...
in [26], we selected REP Tree as a ML model for predicting the MTTF.

B. Experimental Data

To assess the validity of our policies, we run two different experiments, one with two regions, and one with three regions. The first experiment evaluates all the three policies on a geographically-distributed hybrid cloud environment composed of Region 1 and Region 3, namely using Amazon VMs in Ireland and privately-hosted VMs in Munich.

For each policy, Figure 3 shows the variation over time of: a) the RMTTF of each region, b) the calculated fraction \(f_i \) for each region, and c) the average response time measured by all clients. By the results, we can see that the three policies show different behaviours. In particular:

- With Policy 1, the values of the RMTTF of the two regions do not converge. This can be seen by the fact that the two RMTTF stabilize to different values. Further, the values of \(f_i \) are subject to oscillations.
- Policy 2 performs better. The values of the RMTTF converge quite quickly, and \(f_i \) shows less-oscillating values. We remark that Policy 2 explicitly takes into account an estimation of the amount of available resources on each region.
- Policy 3 is able to converge better than Policy 1, however the values of RMTTF and \(f_i \) are less stable with respect to Policy 1.

In all cases, the average response time measured at the clients is kept below the threshold of 1 second, and its variations are not highly affected by some policy more than others.

A more complex scenario is reported in Figure 4, where all three regions are used. This experiment confirms that with Policy 1 the RMTTF does not converge. In particular, the values of the RMTTF continue to oscillate, and so do the values of \(f \). This, in turn, causes many redirections of the request flow between regions, which generates additional overhead in the system. Contrarily, both Policy 2 and 3 are able to cope with the heterogeneity of regions, given that the RMTTF converges in both cases. Policy 2 converges more quickly, although it produces values of \(f_i \) that are slightly more oscillating than Policy 3. For the sake of brevity, we do not report the response time measured at the clients for the case of 3 regions, because it is similar to the results shown in Figure 3.

Overall, we can conclude that Policy 1, based on the sensible routing, is more suitable for less-heterogeneous environments, as already reported in [7]. On the contrary, when heterogeneity is very high, the quickest convergence and the most stable results are provided by Policy 2, which is based on explicit available resources accounting. Exploration approaches, such as Policy 3, are similarly valid, yet they can suffer more from their intrinsic randomness.

VII. Conclusions

In this paper we analyzed different policies to balance the workload across heterogeneous cloud regions. Particularly, we focused on the case of a large-scale deployment on heterogeneous cloud regions of applications subject to software anomalies. We study the different policies in the context of ACM Framework, which uses ML models to predict the MTTF of machines that run server replicas of an application. All load balancing policies that we studied rely on MTTF predictions, and they aim at ensuring that all active VMs in all regions show the same MTTF in front of the heterogeneity of regions. By the results, the policy which explicitly takes into account the estimation of the amount of resources in all cloud regions has been proven to show the fastest convergence and the highest stability.

ACKNOWLEDGEMENTS

The research presented in this paper has been supported by the European Union via the EC funded project PANACEA, contract number FP7 610764.

REFERENCES

Fig. 3. Results using 2 regions. First row shows RMTTF, second row shows the workload factor f_i, third row shows the response time measured by the clients of the system.

Fig. 4. Results using 3 regions. First row shows RMTTF, second row shows the workload factor f_i, third row shows the response time measured by the clients of the system.