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1. Introduction

A parallel discrete event simulator consists of a
set of logical processes (LPs), each one modeling a
specific portion of the simulated system, which are
essentially discrete event simulators having their own
simulation clock, their own state variables and their
own event list [3]. The execution of a simulation
event at an LP usually modifies the LP state and
possibly schedules new events to be executed at later
simulation time. The scheduling of events among
distinct LPs takes place through the exchange of
messages carrying the content and the simulation time,
namelytimestamp, of the event.

The central problem of parallel discrete event sim-
ulation issynchronization, which must ensure the se-
quence of event executions at any LP satisfies some
correctness criterion, typicallytimestamp ordering. To
solve the synchronization problem many algorithms
have been proposed, differing from each other by the
strategy for simulating the events. In the conserva-
tive strategy an LP executes an event only after de-
termining the event execution will not result in any
timestamp order violation. In the optimistic strategy,
the LPs execute events aggressively without the guar-
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antee of no timestamp order violation. When real vi-
olations are detected, a rollback mechanism is used
to recover the state of the simulation application to a
correct value. As compared to the conservative strat-
egy, the optimistic one allows the exploitation of par-
allelism anytime it is possible for violations to occur
but they do not.

Some optimistic algorithms, like classical Time
Warp [7], adopt no control at all on the optimism of
event execution. Some others adopt controlled opti-
mism (see, for example, [1,2,8–10,13,14]) in order to
keep low the amount of rollback while still exploit-
ing parallelism internal to the application. A classi-
fication of these algorithms based on controlling cri-
teria has been recently presented by Srinivasan and
Reynolds [11].

The work in [11] introduces also a new class of al-
gorithms with controlled optimism, namely thenear
perfect state information (NPSI) algorithms [11]. In
these algorithms state information is used to compute
an error potential (EP) that constitutes the basis for
optimism control. Specifically, the control mechanism
consists of delaying the event execution (i.e., limiting
aggressiveness in the event execution) based on the EP
value. In addition, the authors instantiate an NPSI al-
gorithm, called theelastic time algorithm (ETA), in
which the EP of an LP is computed using state infor-
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mation related to all the predecessors of the LP in the
communication graph of the simulation application.

In this paper we show by discussion how, depend-
ing on proper dynamics of the application, the EP cal-
culation underlying ETA might result excessively con-
servative in that the computed value for EP might re-
sult over-sized. We then propose a restricted version of
ETA, namelyrestricted elastic time (RETA), in which
the EP value is computed more optimistically using
state information associated with a restricted set of
predecessors of the LP.

Results of an empirical study on a stress case simu-
lation model demonstrate the potential of RETA in re-
ducing the completion time of the parallel simulation
application.

The remainder of the paper is structured as follows.
In Section 2 we provide details on the NPSI approach
and on ETA. In Sections 3 and 4 we discuss the EP cal-
culation associated with ETA and point out approaches
for a more optimistic calculation. Section 5 presents
RETA. The results of the empirical study are reported
in Section 6.

2. The NPSI approach and ETA

The NPSI approach can be easily described through
Fig. 1. A functionM1 computes the EP value of the
LP using as input state information collected through
an adequate feedback system. Once computed EP, a
function M2 uses this value to control optimism by
determining the delay in the event execution.

The feedback system should provide up to date
state information and the functionM1 should be
evaluated frequently. This allows NPSI algorithms to
be adaptive in that the EP value changes dynamically
depending on current system conditions, therefore the
delay in the event execution changes dynamically as
well.

In ETA, the functionM1 computes the EP value
associated with an LP by using state information

related to all the LPs belonging to the predecessor set
of that LP. We recall that the predecessor set of an LP
is determined by the communication graph defined by
the LPs in a way that a directed edge exists fromLPj

to LPi if LPj can schedule simulation events forLPi .
In particular, the predecessor set ofLPi includes any
LPk such that there exists a directed path fromLPk

to LPi in the communication graph. We denote the
predecessor set ofLPi asPS(LPi ).

Denoting with:

σi the simulation clock (logical clock) ofLPi ;
νi the minimum unreceived message time of

LPi (that is the smallest timestamp of events
scheduled byLPi but not yet incorporated in
the event lists of the recipient LPs);

ηi the next event time ofLPi (this value is equal
to σi while LPi executes an event);

αi the minimum betweenηi and νi (i.e., αi =
min(ηi , νi ));

α′
i the following value: minLPk∈PS(LPi )(αk)

the functionM1 of ETA computes theEPi value of
LPi as follows:

M1: EPi = max
(
ηi − α′

i ,0
)
. (1)

α′
i is referred to as theminimum future time associ-

ated with LPi . It indicates the minimum simulation
time from which events not yet executed, or currently
being executed, can affectLPi . The responsibility to
calculateα′

i and to provide it toM1 pertains to the
feedback system implementing an adequate reduction
model. Implementations of reduction models can be
found in [5] for the case of a shared memory architec-
ture and in [12] for the case of a distributed memory
architecture. For both ETA and the restricted version
we propose, namely RETA, we have used a solution
similar to the one in [12]. This solution has been de-
signed for the case of a distributed memory system
with a high speed Myrinet switch, which is exactly

state −−−−−→ M1 −−→ EP−−→ M2 −−→ delay
information

Fig. 1. Scheme for NPSI algorithms.
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the type of architecture we have used for the empir-
ical study.

The functionM2 of ETA, which computes the delay
δi in the execution of the next event ofLPi , is defined
as follows:

M2: δi = s × EPi , (2)

wheres is a scaling factor. The authors pointed out
that s is a global static parameter whose value must
be determined in an application specific manner. The
staticity of s comes out from that the adaptiveness of
ETA derives primarily from the dynamic recalculation
of the error potential EP. They also pointed out how
an adequate value fors can be selected automatically
during the simulation execution by monitoring the
impact of its variation on the rate of commitment of
events [11].

3. Comments on the EP calculation of ETA

To understand our perspective on the EP calculation
of ETA produced byM1, we start by introducing an
EP calculation function relying on a global measure of
the simulation time that we denote asglobal minimum
future time (GMFT). Using the notations introduced in
Section 2 and denoting asX the set of all the LPs of
the simulation,GMFT is computed as follows:

GMFT = min
LPk∈X

(αk) (3)

(recall αk is the minimum timestamp value of events
not yet executed byLPk , or currently being executed
by LPk , or produced byLPk and carried by messages
still in transit). Note that the value ofGMFT could be
different from the minimum future timeα′

i associated
with LPi unlessPS(LPi ) = X.

We can now envisage the following EP calculation
function, namelyMGMFT

1 , relying onGMFT:

MGMFT
1 : EPi = max(ηi − GMFT,0). (4)

As the reader can check, the functionM1 can be
thought as derived fromMGMFT

1 by restricting the do-
main of application of the min function. Specifically,
MGMFT

1 relies onGMFT which is computed apply-
ing the min function over theαk values associated
with all the LPs belonging toX (recall X contains
all the LPs of the simulation). Instead,M1 relies on

α′
i which is computed applying the min function only

over theαk values associated with the LPs belonging
to PS(LPi ) ⊆ X (recallPS(LPi ) contains only the LPs
that are predecessors ofLPi ).

By construction, we getα′
i � GMFT, therefore the

EPi value computed byMGMFT
1 is an upper bound on

theEPi value computed byM1. Consequently, we can
think ofMGMFT

1 as a more conservative EP calculation
function, compared toM1.

BothMGMFT
1 andM1 compute the EP value taking

into account the immediate future (i.e., timestamps of
events not yet executed or currently being executed),
which, as shown in [11], leads to effective optimism
control. Therefore we could now wonder which is
the real justification for using the less conservative
functionM1. The justification is that ifLPj does not
belong to the predecessor set ofLPi , then there is no
directed path fromLPj to LPi in the communication
graph, so the simulation progress atLPj cannot affect
the simulation progress atLPi . Hence, there is no need
to include state information associated withLPj in
the calculation ofEPi . In other words, the function
MGMFT

1 might over-size the EP value because it does
not take into account the topological structure of the
communication graph.

The problem we can rise now is: “could the
functionM1 reveal still excessively conservative?”. In
other words, beyond the topological structure of the
communication graph, do other features proper of the
application exist such that if we use them we can get
a less conservative function distinct fromM1 which
defines a more refined EP calculation?

The motivation for previous question is that, al-
though the topological structure of the communication
graph identifies the elements belonging toPS(LPi ) as
the set of LPs whose immediate future might theoret-
ically affect LPi , there exists the possibility that an
LP belonging toPS(LPi ) only marginally affects the
progress ofLPi in practice. This can be due exactly to
a variety of application specific features. Considering
for example branching, there exists the possibility that
the directed path betweenLPj andLPi is extremely
unlikely to favor that an event atLPj ultimately cause
an event to be scheduled atLPi , even if there exists the
possibility for this to occur. Furthermore, even though
no branching exists along the path betweenLPj and
LPi , there is still the possibility that the next event of
LPj will never ultimately cause an event to be sched-
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uled atLPi ; this might be due to the proper nature of
the simulation application.

This points out how the functionM1, although less
conservative thanMGMFT

1 , could still over-size the EP
value depending on application features distinct from
the topological structure of the communication graph.
In other words, we can think ofM1 as a function which
computes the upper bound value of EP with respect to
the immediate future and the topological structure of
the communication graph. This bound reveals tight (or
not) depending on other application specific features.
ThereforeM1 reveals excessively conservative (or not)
depending on these features.

4. More optimism in the EP calculation

The ideal approach to solve the problem raised in
previous section would be to explicitly take into ac-
count application features distinct from the topologi-
cal structure of the communication graph for optimism
control purposes. This might render the EP calculation
less conservative in some circumstances and better tai-
lored to the specific application; we call this approach
asopaque. However, this solution suffers from the fol-
lowing main problems:

• The feedback system that manipulates state in-
formation could have to be re-designed and re-
implemented each time a new application must
be supported. This is because it must be instan-
tiated according to a number of application fea-
tures whose nature can vary from an applica-
tion to another. For the case of feedback sys-
tem implemented with general purpose commer-
cial hardware, this might originate enormous de-
sign/programming efforts. For the case of feed-
back system implemented with special purpose
hardware, we might also incur additional hard-
ware costs.

• In some case the global impact of application
specific features on synchronization requirements
could be practically impossible to identify.

As opposed to the opaque solution, we can envis-
age atransparent approach aiming at rendering the
M1 function less conservative without explicitly con-
sidering application features distinct from the topolog-

ical structure of the communication graph. This ap-
proach is structured as follows. Let us consider the
predecessor setPS(LPi ) of LPi , and define a subset
S(LPi ) ⊆ PS(LPi ). Denote asα′′

i the following:

α′′
i = min

LPk∈S(LPi )
(αk). (5)

We call α′′
i the restricted minimum future time as

it is analogous to the the minimum future timeα′
i

associated withLPi except for that it is computed over
a subset (therefore a restricted set) of the elements in
PS(LPi ). By usingα′′

i we introduce the following EP
calculation function:

M ′
1: EPi = max

(
ηi − α′′

i ,0
)
. (6)

This function has structure similar to the function
M1 of ETA. It usesα′′

i instead ofα′
i for computing

EPi . By constructionα′′
i � α′

i (due to the fact that
S(LPi ) ⊆ PS(LPi )), hence theEPi value computed
by M1 is an upper bound on theEPi value computed
by the functionM ′

1. Therefore, using the minimum
restricted future time in the calculation of EP leads
to a less conservative solution as compared toM1.
This is exactly what we were looking for. Overall,
in the transparent approach we try to compensate
the potentially too conservative EP calculation of
M1 without explicitly considering application specific
features distinct from the topological structure of the
communication graph. The RETA algorithm that we
propose in the next section is based exactly on this
transparent approach.

5. Restricted ETA

The key point of the transparent approach is to
identify a subsetS(LPi ) of PS(LPi ) such that the EP
calculation, although less conservative as compared to
the one performed by the functionM1 associated with
ETA, still allows effective optimism control.

In our perspective the selection of the elements
LPj ∈ PS(LPi ) to be included in the setS(LPi ) should
be based on the distance betweenLPj andLPi in the
communication graph, evaluated in terms of directed
edges to be crossed starting fromLPj to reachLPi .
More precisely, we define the distance betweenLPj

and LPi , denoted asD(LPj ,LPi ), as theminimum
number of edges to be crossed starting fromLPj to
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reachLPi . By convention, if there is no directed path
betweenLPj and LPi in the communication graph,
thenD(LPj ,LPi ) = ∞. Trivially, 1 � D(LPj ,LPi ) �
∞.

In the RETA algorithm that we propose, the value
α′′

i of the restricted minimum future time is computed
applying the min function over the setS(LPi ) which
is originated fromPS(LPi ) by discarding all the LPs
whose distance fromLPi is larger than one. In other
words, the setS(LPi ) contains only the immediate
predecessors ofLPi . Formally:

S(LPi ) = {
LPj | D(LPj ,LPi ) = 1

}
. (7)

Therefore, RETA adopts the functionM ′
1 in (6)

with α′′
i computed over the setS(LPi ) defined in (7).

For what concerns the final computation of the
event execution delay, RETA adopts the same function
M2 adopted in ETA (see expression (2)), therefore
theEPi value computed using the restricted minimum
future time is translated into delay through a simple
scaling factor.

As respect to effectiveness, computing the re-
stricted minimum future time based only on state in-
formation associated with the immediate predecessors
of any LP originates a final behavior such that the sim-
ulation progress ofLPi remains still controlled based
on state information associated with all the LPs be-
longing toPS(LPi ), which is the basic philosophy un-
derlying ETA. Such a final behavior derives from the
fact that the progress of the immediate predecessors of
LPi is, in its turn, controlled based on state informa-
tion associated with their immediate predecessors and
so on. Therefore, LPs belonging toPS(LPi ), which are
not immediate predecessors ofLPi , still have a form of
control on the progress ofLPi .

6. Performance analysis

In this section we report the results of an empir-
ical analysis to compare ETA and RETA. As a test-
ing environment we have used a cluster of PCs Pen-
tium II 300 MHz (128 MB RAM) with LINUX, inter-
connected by a high speed Myrinet switch. To calcu-
late α′

i andα′′
i we have used an implementation of a

distributed reduction model consisting of a communi-
cation module to disseminate state information among

the hosts and a module to calculate the reduction func-
tion on the basis of information collected through the
communication module. Actually, the implementation
is similar to the one presented in [12].

In the simulation software we have used, memory
space for new entries into the event lists of the LPs is
allocated dynamically. The same dynamical approach
has been used for the entries of the stack of check-
pointed state vectors. Rollback is non-preemptive and
adopts aggressive antimessage sending [6]. Global
Virtual Time calculation and “fossil collection” are ex-
ecuted periodically. Also, in the implementations of
ETA and RETA, the blocking state due to event ex-
ecution delay is opaque in that the LP is allowed to
receive messages while in the blocking state. Waiting
is aborted in case of receipt of a message/antimessage
that causes rollback.

The simulation model we have used for the em-
pirical study is derived as a particular instance of the
PHOLD model [4]. We recall PHOLD is widely used
as a standard benchmark in the parallel discrete event
simulation literature. It consists of a fixed number
of LPs and of a constant number of events, namely
jobs, circulating among the LPs. Routing of jobs and
timestamp increments are taken from some stochastic
distributions.

The configuration of PHOLD we have selected has
a bi-directional ring topology in which each LP has a
left and a right neighbor LP, and each job is equally
likely to be forwarded to one of the two neighbor LPs.
The bi-directional ring topology has been selected for
the following two reasons:

(i) For model size (number of LPs) larger than three,
PS(LPi ) does not coincide with the setS(LPi )

defined in (7), thusα′
i does not coincide with

α′′
i and the two functionsM1 andM ′

1 lead ETA
and RETA to perform different optimism control
decisions (recall that ifS(LPi ) coincides with
PS(LPi ), then RETA boils down to ETA).

(ii) For model size larger than two, there is non-null
probability that an event, namely a job arrival, at
any LP will never ultimately cause an event to be
scheduled at another LP within a finite amount
of simulation time. (In other words, a job might
move in the ring without ever reaching a given LP
within a finite amount of simulation time.) There-
fore, as pointed out in Section 3, more optimism
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Table 1
Event rate vs. model size (standard deviation and confidence intervals are reported within brackets)

Synchronization Model size

algorithm 4 5 6

ETA 9370 (78,±64) 10,803 (83,±69) 11,512 (101,±84)

RETA 9506 (93,±77) 11,572 (124,±103) 12,834 (119,±99)

in the EP calculation, as compared to the calcu-
lation underlying ETA, might be desirable. This
feature allows us to test the two algorithms on a
stress case simulation model having the capability
to highlight the advantages of RETA.

We have fixed the event granularity, i.e., the event
processing time, at about 200 microseconds and check-
pointing to support rollback is performed after the exe-
cution of each event. Since this application is actually
stateless, checkpointing consists only of copying the
simulation clock and the seeds for the random number
generation. Also, the timestamp increment is selected
from an exponential distribution with mean 10 simu-
lation time units and the job population has been fixed
at 5 jobs per LP (a similar workload has been adopted
for some instances of the PHOLD model used in [11]
for studying the performance of ETA). In the exper-
iments we have mapped each LP onto a distinct ma-
chine and we have varied the model size (number of
LPs) from four to six.1 As pointed out before, model
size less than or equal to three is useless since it would
lead RETA to boil down to ETA.

Finally, to ensure fairness in the comparison, the
communication module implementing part of the re-
duction model has been set in order to perform the
same communication operations independently of the
reduction function that must be supported. Otherwise
the reduction function forα′

i could require higher
communication overhead as compared to the reduc-
tion function forα′′

i (recall that the calculation ofα′
i

at the machine hostingLPi requires information as-

1 One LP per machine leads to the highest degree of parallelism
in the simulation model execution, which could originate excessive
amount of rollback if synchronization algorithms with no controlled
optimism are adopted. Therefore, this choice allows us to test ETA
and RETA in a situation in which controlled optimism is mandatory
in practice. Also, the maximal model size we have considered is six
since this is the number of available machines in the cluster.

sociated with all the predecessors ofLPi , while the
calculation ofα′′

i requires only information associated
with the immediate predecessors).

As a performance parameter, we have selected
the event rate, i.e., the number of committed events
per second. This parameter indicates how fast is the
simulation execution with a given synchronization
algorithm, therefore it is representative of the achieved
performance. For this parameter, we report the average
value, computed over ten runs, the standard deviation
over the ten samples and the confidence interval
computed at the 95% confidence level on the basis
of the t-Student distribution. All the runs were done
with different seeds for the random number generation
and at least 1× 106 committed events were simulated
in each run. For both ETA and RETA we report the
value of the event rate obtained in correspondence to
the “best suited” value ofs, i.e., the value yielding the
best performance.2

The results are reported in Table 1. They point out
that RETA provides performance gain that increases
with the model size. This is an expected behavior since
increasing the model size exalts features in points (i)
and (ii), which were expected to highlight differences
between ETA and RETA and also advantages of
RETA. Note that the gain provided for the case
of maximal model size is in the order of 11%,
which represents a relevant performance improvement
when considering it is achieved over an optimized
synchronization algorithm.

As a final point, tailoring the communication mod-
ule associated with the implementation of the reduc-
tion model in order to transmit the minimal amount of
information required to calculateα′′

i should be likely

2 In the experiments we have varied manually the value ofs

between 0 and 200 microseconds per simulation time unit, with step
of 10 at each increment. For both ETA and RETA the characteristic
peak in performance has been noted for values ofs within that
interval.
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to yield further performance improvements due to pos-
sible reductions of the communication overhead. This
would also allow higher scalability of RETA.
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